Publicaciones

Recopilación de artículos, congresos, etc.

Informes

Ariza-López, F.J.; Reinoso-Gordo, J.F. (2020). Aproximación a la calidad funcional. INFORME INTERNO En proyecto: «Calidad funcional de modelos digitales de elevaciones del terreno en ingeniería», Programa Estatal, Ministerio de Ciencia, Innovación y Universidades, Convocatoria 2019.

Reinoso-Gordo, J.F. (2020). Casos de uso. INFORME INTERNO En proyecto: «Calidad funcional de modelos digitales de elevaciones del terreno en ingeniería», Programa Estatal, Ministerio de Ciencia, Innovación y Universidades, Convocatoria 2019.

Reinoso-Gordo, J.F. (2021). Directrices 1. INFORME INTERNO En proyecto: «Calidad funcional de modelos digitales de elevaciones del terreno en ingeniería», Programa Estatal, Ministerio de Ciencia, Innovación y Universidades, Convocatoria 2019.

León-Robles, C.A. (2021). Delimitación de zonas de trabajo en campo. INFORME INTERNO En proyecto: «Calidad funcional de modelos digitales de elevaciones del terreno en ingeniería», Programa Estatal, Ministerio de Ciencia, Innovación y Universidades, Convocatoria 2019.

Gacía-Balboa JL, Mozas-Clavache AT (2021). Protocolo para la toma de parches mediante LiDAR terrestre (TLS) invertido. INFORME INTERNO En proyecto: «Calidad funcional de modelos digitales de elevaciones del terreno en ingeniería», Programa Estatal, Ministerio de Ciencia, Innovación y Universidades, Convocatoria 2019.

PUBLICACIONES RECIENTES

Mesa-Mingorance, J.L.; Ariza-López, F.J. (2020). Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades. Remote Sensing. Remote Sens. 2020, 12(16), 2630; https://doi.org/10.3390/rs12162630

Alba-Fernández, M.V.; Ariza-López, F.J.; Jiménez-Gamero, M.D. A New Approach to the Quality Control of Slope and Aspect Classes Derived from Digital Elevation Models. Remote Sensing. 2021, 13, 2069 https://doi.org/10.3390/rs13112069

Ariza-López FJ, Reinoso-Gordo JF (2021). Comparison of Gridded DEMs by Buffering. Remote Sensing, 13(15) https://doi.org/10.3390/rs13153002

Ariza-López FJ, Reinoso-Gordo JF (2021). Métodos de orlado para la evaluación de la exactitud altimétrica en modelos digitales de elevaciones del terreno. Revista Cartográfica IPGH. https://doi.org/10.35424/rcarto.i103.975

Rodríguez-Avi, J (2021). Aproximación al error en MDE por mixtura de distribuciones. Revista Cartográfica IPGH. https://doi.org/10.35424/rcarto.i103.968

Alba-Fernández MV (2021). Aplicación de los test de equivalencia al control tipo temático de magnitudes asociadas a un modelo digital de elevaciones. Revista Cartográfica del IPGH. https://doi.org/10.35424/rcarto.i103.993

Mozas-Calvache AT (2021) Positional quality assessment based on linear elements. Revista Cartográfica del IPGH. https://doi.org/10.35424/rcarto.i103.911

Alba-Fernandez MV, Ariza-Lopez FJ, Jimenez-Gamero MD. (2020) Thematic-accuracy quality control of slope and aspect classes based on an equivalence test. CMStatistics. CMStatistics 2020

Rodríguez-Avi J, Ariza-López FJ (2021). Finite mixtures of normal distributions in the study of the error in altimetry. En 30th International Cartographic Conference 2021, Florencia (Aceptado) ICC 2021 Florencia

Ariza-López FJ, Reinoso-Gordo JF, Rodríguez-Avi J (2021). DEM’s elevation comparison by surface buffering. En 30th International Cartographic Conference 2021, Florencia (Aceptado). ICC 2021 Florencia

Eddargani S, Ariza-López, FJ, Barrera D, Ibáñez MJ, Reinoso-Gordo JF, Romero-Zaliz R, Ureña-Cámara M (2021). Low computational cost construction of 2D approximating splines and its application to Digital Elevation Models. En 2021 International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE) and the First Conference on High Performance Computing (CHPC), Rota, del 22-27 de julio de 2021. ICC 2021 Florencia

Barrera D, Ariza-López, FJ, Eddargani S, Ibáñez MJ, Reinoso-Gordo JF (2021) Spline-based approximation of digital elevation models. En XV Biannual Congress of the Società Italiana di Matematica Applicata ed Industriale, Parma 2021 (participación on line). Horizontal accuracy assessment of a novel algorithm for approximate a surface to a DEM. En 30th International Cartographic Conference, Florencia, 14-18 Dicembre. Aceptado. ICC 2021 Florencia

Barrera, D., Ibáñez, M.J., Salah, E., Romero, R., Ariza-López, F.J., Reinoso-Gordo J.F. (2021). Horizontal accuracy assessment of a novel algorithm for approximate a surface to a DEM. En 30th International Cartographic Conference 2021, Florencia. Aceptado. ICC 2021 Florencia

Alba-Fernández MV, (2021). Multivariate and spatialised similarity analysis of two Digital Elevation Models via a large number of multinomials in a two-sample problem paradigm. Congreso ERCIM 2021. Aceptado. ERCIM 2021

PUBLICACIONES PREVIAS EN LA TEMATICA

Mesa-Mingorance, JL; Ariza-López, FJ. (2019). Evaluación de la calidad en modelos digitales de elevaciones. Bibliografía Comentada. GIIC-UJAEN

López-Vázquez, C. and Hochsztain, E.(2019). Extended and updated tables for the Friedman rank test. Communications in Statistics – Theory and Methods, 48, 2, 268-281 https://doi.org/10.1080/03610926.2017.140882

Ariza-López, FJ, EG Chicaiza Mora, JL Mesa Mingorance, J Cai, JF Reinoso Gordo (2018). DEMs: An Approach to Users and Uses from the Quality Perspective. International Journal of Spatial Data Infrastructures Research (EU-Joint Research Centre). 13: 131-171. http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/view/469/430

Mesa-Mingorance JL, Ariza-López, FJ (2018). MDE: Referencias sobe evaluación de la calidad (1990-2017). GIIC Universidad de Jaén

Mesa Mingorance JL, EG Chicaiza Mora, X Buenaño, J Cai, AF Rodríguez Pascual, Ariza-López, FJ (2017). Analysis of Users and Uses of DEMs in Spain. ISPRS I.J. Geo Information (MDPI). 6(12) 406. doi.org/10.3390/ijgi6120406

Mozas Calvache, AT, Ureña Cámara, MA, Ariza-López, FJ (2017). Determination of 3D Displacements of Drainage Networks Extracted from Digital Elevation Models (DEMs) Using Linear-Based Methods. ISPRS I.J. Geo Information (MDPI). 6(8), 234. doi.org/10.3390/ijgi6080234

Padilla-Ruiz, M. y López-Vázquez, C. (2017). Measuring conflation success, Revista Cartográfica 94, 41-64

Mesa Mingorance JL, Chicaiza EG, Buenaño X, Jianhong C, Rodríguez-Pascual AF, Ariza-López FJ (2016). Análisis de los usuarios y usos de los MDE en España. Geofocus, nº 17. http://geofocus.org/index.php/geofocus/article/view/466/365

López-Vázquez, C. (2016). A protocol for the ranking of interpolation algorithms based on confidence levels, International Journal of Remote Sensing 37, 19, 4683-4697 https://doi.org/10.1080/01431161.2016.1219461

 

López-Vázquez, C. y Manso Callejo, M. A. (2012). Point and Curve-Based Geometric Conflation, International Journal of Geographic Information Science, 27, 1, 192-207 https://doi.org/10.1080/13658816.2012.677537

Ariza-López, FJ; Ureña Cámara, M.A.; García Balboa (2010). Terra-Aster GDEM una posibilidad global para los catastros altimétricos. En 1er Congr. Int. sobre Catastro Unificado Multipropósito. Jaén, 2010. ISBN:978-84-8439-519-5

Cuartero, A, Felicisimo AM, Ariza-López, FJ (2005). Accuracy, reliability, and depuration of SPOT HRV and Terra ASTER digital elevation models IEEE Transactions on Geoscience and Remote Sensing 43 (2), 404-407 DOI: 10.1109/TGRS.2004.841356

Cuartero, A; Felicísimo, AM; Ariza-López, FJ (2004). Accuracy of DEM generation from Terra-ASTER stereo data. Proceedings XXth Congress ISPRS 2004. Estambúl. Comission VI, WG VI/4. Vol. XXXV, part B5.

[01] Oxera (2013). What is the economic impact of Geoservices. Prepared for Google. Oxera. https://www.oxera.com/wp-content/uploads/2018/03/What-is-the-economic-impact-of-Geo-services_1-1.pdf
[02] Altan O y col (2013). The Value of Geoinformation for Disaster and Risk Management (VALID) Benefit Analysis and Stakeholder Assessment. Joint Board of Geospatial Information Societies (JB GIS). http://www.un-spider.org/sites/default/files/VALIDPublication.pdf
[03] Onsrud H (2009). Liability for Spatial Data Quality. En Devillers, Rodolphe and Helen Goodchild (Eds.), Spatial Data Quality: From Process to Decisions (New York: CRC Press) 187-196. https://doi.org/10.1201/b10305-22
[04] Chuvieco E (2010). Teledeteccion ambiental. Ariel. ISBN: 978-8434434981
[05] Gomez C y col (2015). A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology. Vol 242, 11-20. https://doi.org/10.1016/j.geomorph.2015.02.021
[06] Saksena S y col (2015). Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. Journal of Hydrolophy. Vol. 530, 180-194. https://doi.org/10.1016/j.jhydrol.2015.09.069
[07] Juel A y col (2015). Spatial Application of Random Forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data. International Journal of Applied Earth Observation and Geoinformation. Vol. 42, 106-114. https://doi.org/10.1016/j.jag.2015.05.008
[08] Rekha P y col (2015). Assessment of impact of shrimp farming on coastal groundwater using Geographical Information System based Analytical Hierarchy Process. Aquaculture. Vol 448, 491-506. https://doi.org/10.1016/j.aquaculture.2015.06.025
[09] Petrie G y col (1987) Terrain Modeling in Surveying and Civil Engineering. Computer-Aided Design 19(4):171-187. http://petriefied.info/Petrie_Kennie_Terrain_Modelling_C-A-Design_1987.pdf
[10] Babic S y col (2010) Digital Terrain Model Application in Road Planning and Design. International conference on Road and Rail Infrastructure, At Opatija, Croatia, Volume: 1. ISBN: 978-953-6272-38-9
[11] Mesa J y col (2017). Analysis of Users and Uses of DEMs in Spain. ISPRS Int. J. Geo-Inf., 6(12), 406. https://doi.org/10.3390/ijgi6120406
[12] Mesa J y Ariza FJ (2018). MDE: Referencias sobe evaluación de la calidad (1990-2017). GIIC Universidad de Jaén.
[13] Ariza F y col (2018). DEMs: An Approach to Users and Uses from the Quality Perspective. International Journal of Spatial Data Infraestructures Research, 13:131-171. http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/view/469/430. https://doi.org/10.2902/1725-0463.2018.13.art12
[14] Carrion D, et al. (2010). Formal quality assessment of crises maps produced during 2005-2010. https://doi.org/10.2788/66009
[15] Steiniger S y col (2013). The 2012 free and open source GIS software map – A guide to facilitate research, development, and adoption. Computers Environment &Urban Systems 39: 136-150. https://doi.org/10.1016/j.compenvurbsys.2012.10.003
[16] Edwards P (1999). Global Climate science, uncertainty and politics: Data-landen models, model-filtered data. En Science as culture, 8(4):437:470. https://doi.org/10.1080/09505439909526558
[17] Knutti R y col (2012). Robustness and uncertainties in the new CMIP5 climate model projections. En Nature Climate Change. https://doi.org/10.1038/nclimate1716
[18] Beale C y col (2012). Incorporating uncertainty in predictive species distribution modelling. En Philosophical Transactions B. https://doi.org/10.1098/rstb.2011.0178
[19] Devendran A y col (2014). A review on accuracy and uncertainty of spatial data and analyses with special reference to urban and hydrological modelling. En ISPRS Annals of the PESIS. ISPRS. https://doi.org/10.5194/isprsannals-II-8-171-2014
[20] Fisher P y col (2006). Causes and consequences of error in DEMs, Progress in Physical Geography 30(4):467-489. https://doi.org/10.1191/0309133306pp492ra
[21] Bühler Y y col (2012). High resolution DEM generation in high-alpine terrain using airborne Remote Sensing techniques. Transaction in GID, Vol. 16(5), pp. 635-647. https://doi.org/10.1111/j.1467-9671.2012.01331.x
[22] ASPRS (2015). ASPRS Positional Accuracy Standards for Digital Geospatial Data, PE&RS. https://doi.org/10.14358/PERS.81.3.A1-A26
[23] Maune D (2007). Digital elevation model technologies and applications. The DEM user’s manual. ASPRS. ISBN-13: 978-1570830648
[24] Zandbergen P (2008). Positional Accuracy of Spatial Data: Non-Normal Distributions and a Critique of the National Standard for Spatial Data Accuracy. Transactions in GIS, 12(1):103-130. https://doi.org/10.1111/j.1467-9671.2008.01088.x
[25] Zandbergen P (2011). Characterizing the error distribution of Lidar elevation data for North Carolina. International Journal of Remote Sensing, 32(2):409-430. https://doi.org/10.1080/01431160903474939
[26] Boin A y col (2006). Do spatial data consumers really understand data quality information? Proceedings 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Edited by M. Caetano and M. Painho. http://www.spatial-accuracy.org/Boin2006accuracy
[27] Boin A y col (2009). What communicates quality to the spatial data consumer? In Quality aspects in spatial data mining, Boca Raton, pp. 285-296. ISBN: 9781420069266
[28] Wechsler S (2003). Perceptions of DEM uncertainty by DEM Users. URISA Journal 15(2):57-64. https://pdfs.semanticscholar.org/4b2b/206a37d6220de2c97f6a82832731dca85565.pdf
[29] ISO (2013). ISO 19157 Geographic Information – Data Quality. ISO, Genebre, Switzerland. https://www.iso.org/standard/32575.html
[30] Ariza F y col (2008). Analysis of some Positional Accuracy Assessment Methodologies. Surveying Engineering, 134(2):45-54. http://coello.ujaen.es/Asignaturas/pcartografica/recursos//Ariza_Atkinson_2008_JSE_Asessment_Methodologies.pdf
[31] Ariza-López, F.J., Rodríguez-Avi, J. (2014). A method of positional quality control testing for 2D and 3D line strings. In Transactions in GIS. https://doi.org/10.1111/tgis.12117
[32] Ariza F y col (2018). A Positional Quality Control Test Based on Proportions. En Lecture Notes in G&C. Springer. https://link.springer.com/chapter/10.1007/978-3-319-78208-9_18
[33] Ariza-López F.J., Rodríguez-Avi J., Alba-Fernández V. (2018) A Positional Quality Control Test Based on Proportions. In: Mansourian A., Pilesjö P., Harrie L., van Lammeren R. (eds) Geospatial Technologies for All. AGILE 2018. Lecture Notes in Geoinformation and Cartography. Springer, Cham
[34] Ariza López, FJ, Rodríguez-Avi, González-Aguilera, Rodríguez-Gonzálvez (2019). A New Method for Positional Accuracy Control for Non-Normal Errors Applied to Airborne Laser Scanner Data. Appl. Sci. 2019, 9, 3887
[35] Whittaker J (2009). Graphical Models in Applied Multivariate Statistics. Wiley. ISBN: 978-0-470-74366-9.
[36] Felicisimo A (1994). Parametric statistical method for error detection in digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 49, nº4, pp. 29-33. https://doi.org/10.1016/0924-2716(94)90044-2
[37] Li Z y col (2005). Digital Terrain Modeling. CRC Press. https://www.crcpress.com/Digital-Terrain-Modeling-Principles-and-Methodology/Li-Zhu-Gold/p/book/9780415324625
[38] Ariza F y col (2008b). Variability of NSSDA estimations. Surveying Engineering, 134(2): 404-407. http://coello.ujaen.es/Asignaturas/pcartografica/recursos//Ariza_Atkinson_2008_JSE_NSSDA.pdf
[39] Ariza F y col (2008c) Sample size and confidence when applying the NSSDA. Journal of Surveying Engineering https://www.researchgate.net/profile/Alan_Atkinson_Gordo/publication/254956320_SAMPLE_SIZE_AND_CONFIDENCE_WHEN_APPLYING_THE_NSSDA/links/55e02fba08ae6abe6e86ce36/SAMPLE-SIZE-AND-CONFIDENCE-WHEN-APPLYING-THE-NSSDA.pdf
[40] Ariza F y col (2010). Analysis of User and Producer Risk when Applying the ASPRS Standards for Large Scale Maps. PE&RS. http://coello.ujaen.es/Asignaturas/pcartografica/recursos//Ariza_yCol_PERS_MAY_2010_625_632.pdf
[41] Wechsler S (2007). Uncertainties associated with DEMs for hydrologic applications: a review. Hydrol. Earth Syst. Sci., 11, 1481-1500. https://doi.org/10.5194/hess-11-1481-2007
[42] Erdogan S (2010). Modelling the spatial distribution of DEM error with geographically weighted regression: An experimental study. Computers & Geosciences Vol. 36, pp. 34-43. https://doi.org/10.1016/j.cageo.2009.06.005
[43] Höhle J y col (2009). Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64, pp. 398-406. https://doi.org/10.1016/j.isprsjprs.2009.02.003
[44] Aguilar FJ y col (2007). A theoretical approach to modeling the accuracy assessment of digital elevation models. Photogrammetric Engineering & Remote Sensing 73 (12):1367-1379. https://doi.org/10.14358/PERS.73.12.1367
[45] Raaflaub L y col (2006). The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modelling & Software, 21:710-732. https://doi.org/10.1016/j.envsoft.2005.02.003
[46] Sanders B (2007). Evaluation of on-line DEMs for flood inundation modeling. Advances in Water Resources. 30. 1831-1843. 10.1016/j.advwatres.2007.02.005.
[47] Racoviteanu A y col (2007). Evaluating digital elevation models for glaciologic applications: An example from Nevado Coropuna, Peruvian Andes. Global and Planetary Change, 59:110-125. https://doi.org/10.1016/j.gloplacha.2006.11.036
[48] Vaze T (2010). Impact of DEM accuracy and resolution on topographic indices. EM&S 25:1086-1098. https://doi.org/10.1016/j.envsoft.2010.03.014
[49] Bonin O y col (2005). Digital Terrain Model Computation from Contour Lines: How to Derive Quality Information from Artifact Analysis. GeoInformática Vol. 9(3), pp. 253-268. https://doi.org/10.1007/s10707-005-1284-2
[50] Mozas A y col (2013). Accuracy of contour lines using 3D bands. International Journal of Geographical Information Science, 27(12): 2362-2374. https://doi.org/10.1080/13658816.2013.801484
[51] Mozas A y col (2017). Determination of 3D Displacements of Drainage Networks Extracted from Digital Elevation Models (DEM) Using Linear-Based Methods, ISPRS Int. J. Geo-Inf., 6(8), 234; https://doi.org/10.3390/ijgi6080234
[52] Reinoso J (2010). A priori horizontal displacement (HD) estimation of hydrological features when versioned DEMs are used. Journal of hydrology, 384(1-2): 130-141. https://doi.org/10.1016/j.jhydrol.2010.01.017
[53] Devillers R y col (2002). Spatial Data Quality: From Metadata to Quality Indicators and Contextual End-User Manual. Proceedings of OEEPE/ISPRS Joint Workshop on Spatial Data Quality Management, March 21-22, 2002, Istanbul. pp. 45-55. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.4972&rep=rep1&type=pdf
[54] Devillers R y col (2006). Fundamentals of spatial data quality. ISTE. ISBN 9781905209569
[55] Devillers R y col (2010). Spatial data quality, from process to decisions. CRC Press. ISBN 978-1439810125
[56] Darnell A y col (2008). Improving user assessment of error implications in digital elevation models. Computers, Environment and Urban Systems, 32 (4):268-277. https://doi.org/10.1016/j.compenvurbsys.2008.02.003
[57] Podobnikar T (2009). Methods for visual quality assessment of a digital terrain model. SAPIENS. https://journals.openedition.org/sapiens/738
[58] ITWGE (2013) D2.8.II.1 INSPIRE Data Specification on Elevation – Technical Guidelines. http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_EL_v3.0.pdf
[59] ITWGH (2014) D2.8.I.8 INSPIRE Data Specification on Hydrography – Technical Guidelines. http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_HY_v3.0.pdf
[60] Hunter G y col (2009). Spatial Data Quality: Problems and Prospects. En Research Trends in Geographic Information Science. Lecture Notes in Geoinformation and Cartography. https://www.springer.com/la/book/9783540882435
[61] Jiménez M y col (2009b) Goodness-of-fit tests based on empirical characteristic functions. Computational Statistics and Data Analysis, 53, 3957-3971. https://doi.org/10.1016/j.csda.2009.06.001
[62] Alba V y col (2014) Approximating a class of goodness-of-fit test statistics. Mathematics and Computers in Simulation, 102, 24-38. https://doi.org/10.1016/j.matcom.2013.04.025
[63] Alba V y col (2001) A homogeneity test based on empirical characteristic functions. Computational Statistics, 16, 255-270. https://doi.org/10.1007/s001800100064
[64] Alba V y col (2009) A homogeneity test for bivariate random variables. Computational Statistics, 24, 513-531. https://doi.org/10.1007/s00180-008-0144-6
[65] Alba V y col (2008) A test for the two-sample problem based on empirical characteristic functions. Computational Statistics and Data Analysis, 52, 3730-3748. https://doi.org/10.1016/j.csda.2007.12.013
[66] Alba V y col (2009) Bootstrapping divergence statistics for testing homogeneity in multinomial populations. Mathematics and Computers in Simulation, 79, 3375-3384. https://doi.org/10.1016/j.matcom.2009.04.002
[67] Alba V y col (2018) A homogeneity test for comparing Gridded-Spatial-Point patterns of human caused fires. Forests, 9, 454. https://doi.org/10.3390/f9080454
[68] Alba V. y col (2016) On the similiarity analysis of spatial patterns. Spatial statistics, 18, 352-362. https://doi.org/10.1016/j.spasta.2016.07.004
[69] Bishop, Yvonne M., Fienberg, Stephen E., Holland, Paul W. (2007) Discrete Multivariate Analysis: Theory and Practice. Springer. ISBN 978-0-387-72806-3. https://doi.org.10.1007/978-0-387-72806-3
[70] Jolliffe, I.T. (2002). Principal Component Analysis. Springer. ISBN 978-1-4419-2999-0. https://doi.org/10.1007/b98835
[71] Child, D. (2006). The Essentials of Factor Analysis, 3rd edition. Bloomsbury Academic Press. ISBN 9780826480002
[72] Everitt,B. Sabine Landau, Morven Leese, Daniel Stahl (2011). Cluster Analysis, 5th Edition. Wiley. ISBN: 978-0-470-74991-3
[73] Cox, T.F.; Cox, M.A.A. (2001). Multidimensional Scaling. Chapman and Hall.
[74] López, C. (1997). Locating some types of random errors in Digital Terrain Models. International Journal Geographical Information Science. Vol. 11, nº7, pp. 677-696 https://doi.org/10.1080/136588197242149
[75] Colleen E. Fuss, Aaron A. Berg & John B. Lindsay (2016) DEM Fusion using a modified k-means clustering algorithm, International Journal of Digital Earth, 9:12, 1242-1255. https://doi.org/10.1080/17538947.2016.1208685
[76] Gonga-Saholiariliva, Y. Gunnell, C. Petit, C. Mering (2011). Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis. Progress in Physical Geography, 1-26. https://doi.org/10.1177/0309133311409086
[77] Peralvo M, Influence of DEM interpolation methods in drainage analysis, GIS Hydro 04, Texas, USA, 2004
[78] Schwendel, A.C.; Fuller, I.C.; Death, R.G. (2012). Assessing DEM interpolation methods for effective representation of upland stream morphology for rapid appraisal of bed stability. River Research and Applications Vol. 28, pp. 567-584. https://doi.org/10.1002/rra.1475
[79] Wise, S. (2011). Cross-validation as a means of investigating DEM interpolation error. Computers & Geosciences, Vol. 37, pp. 978-991. https://doi.org/10.1016/j.cageo.2010.12.002
[80] Kidner, D.B. (2003). Higher-order interpolation of regular grid digital elevation models. International Journal of Remote Sensing, vol. 24, pp. 2981-2987. https://doi.org/10.1080/0143116031000086835
[81] Chen, C.; Liu, F.; Li, Y.; Yan, C.; LIU, G. (2016). A robust interpolation method for constructing digital elevation models from remote sensing data. Geomorphology, vol. 268, pp. 275-287. https://doi.org/10.1016/j.geomorph.2016.06.025
[82] Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K. (2006). Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, vol. 77, pp. 126-141. https://doi.org/10.1016/j.geomorph.2005.12.010
[83] Hengl, G. B. M. Heuvelink, and E. E. van Loon (2010). On the uncertainty of stream networks derived from elevation data: the error propagation approach. Hydrol. Earth Syst. Sci., 14, 1153-1165, 2010. https://doi.org/10.5194/hess-14-1153-2010
[84] Liu, X.; HU, P.;HU, H.; SHERBA, J. (2012). Approximation Theory Applied to DEM Vertical Accuracy Assessment. Transactions in GIS. Vol. 16, nº 3, pp. 397-410. https://doi.org/10.1111/j.1467-9671.2012.01343.x
[85] Chen, C.; Yue, T. (2010). A method of DEM construction and related error analysis. Computers & Geosciences, vol. 36, pp. 717-725. https://doi,oorg/10.1016/j.cageo.2009.12.001
[86] Hu, P.; Liu, X.; Hu, H. (2009). Accuracy Assessment of Digital Elevation Models based on Approximation Theory. Photogrammetric Engineering & Remote Sensing, vol. 75, nº 1, pp. 49-56. https://doi.org/10.14358/PERS.75.1.49
[87] Barrera D, P. González, F. Ibáñez, M. J. Ibáñez: A general spline differential quadrature method based on quasi-interpolation. J. of Computational and Applied Mathematics 275 (2015) 465-479
[88] Barrera D, M. J. Ibáñez: Hermite spline interpolation on a three direction mesh from Powell-Sabin and Hsieh-Clough-Tocher finite elements. J. of Computational and Applied Mathematics 318 (2017) 565-579
[89] Duchon J (1978). Sur l’erreur d’interpolation des fonctions de plusieurs variables par les D m -splines RAIRO – Analyse numérique, tome 12, no 4 (1978), p. 325-33. https://doi.org/10.1051/m2an/1978120403251
[90] Reinoso JF , F. J. Ariza-López, D. Barrera, A. Gómez-Blanco, R. Romero-Zaliz: A fitted B-spline method to derive a representative 3D axis from a set of multiple road traces. Geocarto International 31(8) (2016) 832-844
[91] Arun PV (2013). A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Science. Volume 16, Issue 2, December 2013, Pages 133-139. https://doi.org/10.1016/j.ejrs.2013.09.001
[92] Sorokina T, Zeilfelderb F (2008). An explicit quasi-interpolation scheme based on quartic splines on type-1 triangulations. Computer Aided Geometric Design Volume 25, Issue 1, January 2008, Pages 1-13. https://doi.org/10.1016/j.cagd.2007.05.006
[93] A Kouibia, M Pasadas, Approximation of surfaces by fairness bicubic splines, Advances in Computational Mathematics 20 (1-3), 2004, 87-103
[94] A Kouibia, M Pasadas, D Sbibih, A Zidna, B Belkhatir,Geometric continuity C1G2 of blending surfaces, Computer-Aided Design 45 (3), 2013, 733-738
[95] Felicisimo A (1994). Modelos Digitales del Terreno, Pentalfa. http://www6.uniovi.es/~feli/pdf/libromdt.pdf
[96] Cuartero A y col (2014). The use of Spherical Statistics to Analyze Digital Elevation Models: An Example from LiDAR and ASTER GDEM. IEEE Geoscience and Remote Sensing Letters. Vol. 11, Nº 7, pp:1200-1204. https://doi.org/10.1109/LGRS.2013.2288924
[97] Aguilar FJ y col (2010). Modelling vertical error in LiDAR-derived digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 65, pp. 103-110. https://doi.org/10.1016/j.isprsjprs.2009.09.003
[98] Aguilar M y col (2014). Generation and quality assessment of stereo-extracted DSM from GeoEye-1 and WorldView-2 imagery. IEEE Transactions on Geoscience and Remote Sensing. Vol. 52, Nº2, pp: 1259-1271. https://doi.org/10.1109/TGRS.2013.2249521
[99] Masó J y col (2016). Testbed-12 Imagery Quality and Accuracy ER. OGC. http://docs.opengeospatial.org/per/16-050.html
[100] Chen, C.; Fan, Z.; Ye, T.; DAI, H. (2012). A robust estimator for the accuracy assessment of remote-sensing derived DEMs. International Journal of Remote Sensing, Vol. 33, nº 8, pp. 2482-2497. https://doi.org/10.1080/01431161.2011.615766
[101] Tachikawa T y col (2011) ASTER Global Digital Elevation Model Version 2 summary of validation result. NASA. https://pubs.er.usgs.gov/publication/70005960
[102] DHI GRAS (2014). EU-DEM Statistical Validation. JRC Europe. https://ec.europa.eu/eurostat/documents/7116161/7172326/Report-EU-DEM-statistical-validation-August2014.pdf
[103] Carabajal C y col (2005). ICESat validation of SRTM C-band digital elevation models. Geophysical Research Letters, 32(22). ISBN: 10.1029/2005GL023957
[104] Kramm T, Dirk Hoffmeister (2019). A Relief Dependent Evaluation of Digital Elevation Models on Different Scales for Northern Chile. ISPRS Int. J. Geo-Inf. 2019, 8(10), 430; https://doi.org/10.3390/ijgi8100430
[105] Mandanici E, Valentina A. Girelli and Luca Poluzzi (2019). Metric Accuracy of Digital Elevation Models from WorldView-3 Stereo-Pairs in Urban Areas. Remote Sens. 2019, 11(7), 878; https://doi.org/10.3390/rs11070878
[106] Zhang K, Daniel Gann, Michael Ross, Himadri Biswas, Yuepeng Li and Jamie Rhome (2019). Comparison of TanDEM-X DEM with LiDAR Data for Accuracy Assessment in a Coastal Urban Area. Remote Sens. 2019, 11(7), 876; https://doi.org/10.3390/rs11070876
[107] Ariza López, García Balboa, Ureña Cámara (2014). Dispositivo autonivelado para el levantamiento GNSS de elementos lineales. P201431920 (23.12.2014). http://www.oepm.es/pdf/ES/0000/000/02/53/06/ES-2530686_B1.pdf. EMPRESA/S QUE LA ESTA/N EXPLOTANDO: GEOLAND (Comercialización)
[108] Reinoso Gordo, Ariza López. (2015). Procedimiento y sistema de guiado para la recolección automática de producto hortícola basado en modelado digital 3D. ES2540676 A1 (10.07.2015). http://www.oepm.es/pdf/ES/0000/000/02/54/06/ES-2540676_B2.pdf
[109] de Jager A y col (2010) Development and demonstration of a structured hydrological feature coding system for Europe, Hydrological Sciences Journal, 55:5, 661-675. https://doi.org/10.1080/02626667.2010.490786
[110] Tombari F y col (2015). The Maximal Self-dissimilarity Interest Point Detector. IPSJ Transactions on Computer Vision and Applications 7:175-188. https://doi.org/10.2197/ipsjtcva.7.175
[111] González-Aguilera D. (2017). Proyecto Investigador. Plaza de Catedrático de Universidad, Universidad de Salamanca. Código 2016/D/FC/AC/6
[112] GINIE (2003) Geographic Information Policies in Europe: Recommendations for Action. UE. GINIE: Geographic Information Network in Europe. GINIE D 2.7.2(a). IST-2000-29493
[113] Alba-Fernández, M.V.; Ariza-López, F.J. A Homogeneity Test for Comparing Gridded-Spatial-Point Patterns of Human Caused Fires. Forests 2018, 9, 454.
[114] Salvemini M (2009). The Infrastructure for Spatial Information in the European Community vs. regional SDI: the shortest way for reaching economic and social development. United Nations. https://unstats.un.org/unsd/geoinfo/RCC/docs/rcca9/ip/9th_UNRCCA_econf.99_IP12.pdf
[115] Januchowski et al. 2010. Characterizing errors in DEM and Estimating the Financial Cost of Accuracy. IJGIS. https://doi.org/10.1080/13658811003591680

Proyectos relacionados

MEMCALIG

MEMCALIG Modelización estadística de matrices de confusión en la calidad de la IG Proyecto Nacional | Ministerio de Economía y Competitividad (2016 - 2018)

IPGH2018

Propuesta de adopción de metodologías y procedimientos empleados para la evaluación de la calidad de la información geográfica para los Estados Miembros del IPGH

IPGH2016

Diagnóstico de la situación actual sobre las metodologías y procedimientos empleados para la evaluación de la calidad de la Información Geográfica

E3DELING

Evaluación 3D de Elementos Lineales de Información Geográfia Proyecto Nacional del Ministerio de Educación y Ciencia (2011 - 2014)

ConPoCar

Control Posicional de Cartografía Mediante Elementos Lineales Proyecto Nacional del Ministerio de Educación y Ciencia (2003 - 2006)

Empresas privadas y organizaciones

Trabajos Catastrales (TRACASA) Navarra, España .

Fotografías

Breve selección de imágenes de trabajo

Alrededores de Fitero

Trabajo de campo

En las Bardenas

Trabajo de campo

Nuestras amigas en muchos lugares

Trabajo de campo

Subiendo al puerto de la Belagua

Trabajo de campo

Alrededores de Pamplona

Trabajo de campo

Por encima de la Selva de Irati

Trabajo de campo

Contacto

Si desea contactar con nosotros puede dirigirse a:

fjariza@ujaen.es

Tel +34 953 212469

Fax +34 953 212855