
Abstract
Using a statistical simulation process, the behavior of the
Accuracy Standards for Large Scale Maps (ASLSM) of the
American Society for Photogrammetry and Remote Sensing
is analyzed according to the sample size, as well as the
relation between the limiting errors (thresholds), stated by
the standard as a root mean squared error, and the actual
root mean squared error of the product. When the root
mean squared error of the product equals the threshold of
the standard the simulation results show the ASLSM is very
restrictive, classifying 75 percent of products as Class 2
maps instead of Class 1 maps. If the variability of the
product is greater or lesser than this threshold, results can
be depicted by a family of acceptance curves. These curves
can be employed by users to determine the sample size
needed to limit their acceptance risk, but also by producers
to analyze their rejection risk.

Introduction
The positional accuracy of cartographic products has always
been of great importance. It is, together with logical consis-
tency, the quality element of geographic information most
extensively used by the National Mapping Agencies (NMAs),
being also the more commonly evaluated (Jakobsson and
Vauglin, 2002). Positional accuracy is a matter of renewed
interest because of the capabilities offered by the Global
Navigation Satellite System (GNSS) and the need for a greater
spatial interoperability for supporting the spatial data
infrastructures. Different positional behaviors of geographic
data sets mean the existence of an inter-product positional
distortion and a barrier to interoperation (Church et al.,
1998). This barrier is not only for the positional and geomet-
ric aspects, but also for thematic ones which are greatly
affected by position (Carmel et al., 2006). For these reasons
many NMAs are currently involved in the development of
positional accuracy improvement programs (EuroSDR, 2004).

In a Geographic Data Base (GDB) the position of a real
world entity is described with values in an appropriate
coordinate system. Positional accuracy represents the
nearness of those values to the entity’s “true” position in
that system. The positional accuracy requirements for a
GDB are directly related to its intended use(s). Positional
accuracy is determined by means of a statistical evaluation
of random and systematic errors (DOD, 1990) and specified
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by means of the Root Mean Squared Error (RMSE) or by the
mean value of errors (m) and their standard deviation (s).
Comparison with an independent source of greater accu-
racy is the preferred method for assessing positional
accuracy (ANSI, 1998).

Since positional accuracy is essential in cartographic
production, mapping agencies have used statistical methods
for its control. In the United States of America there are
several recognized standard methodologies which can be
used for specifying spatial data products, and resultant
positional accuracy compliance criteria, or controls, such
as: the National Map Accuracy Standard (NMAS) (USBB,
1947), the Accuracy Standards for Large Scale Maps (ASLSM)
(ASPRS, 1989), the Engineering Map Accuracy Standard
(EMAS) (ASCE, 1983), or the more recent National Standard
for Spatial Data Accuracy (NSSDA) (FGDC, 1998). The NSSDA
was developed by the FGDC to replace the NMAS, the ASLSM
forming the basis for revision of the NMAS (FGDC, 1998).
The increasing importance of Digital Terrain Models during
recent years, and the new acquisition technologies (e.g.,
lidar), support demands for the adaptation of previous
standards or the development of new ones (FEMA, 2003,
NDEP, 2004; ASPRS, 2004; Maune, 2007).

Standards should be taken into account when seeking
economic optimization of the quality of geographic informa-
tion (Krek and Frank, 1999); with a quality standard the
producer provides the product according to the known
specifications and characteristics, as defined in the stan-
dard. This assures a certain level of reliability and certainty,
allowing the acquirer, or user, to avoid excessive measuring
of the quality and thus reducing the measuring cost and
shortening the decision-making process. But standards are
not problem free. As demonstrated recently by Congalton
and Green (2009), they commonly use statistical terms in a
confusing way, implement statistical bases incorrectly, or
are prone to mis-estimation of accuracy parameters. Also, in
general, standards contain problems mainly arising from the
lack of (Ariza and Atkinson, 2008a): definition (formalism,
previous hypothesis testing, bias, and outliers treatment),
and the explanation of their own behavior. For this reason
is very important for both acquirers and suppliers be well-
informed about the main features of the standard they are
working with.
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TABLE 1. PLANIMETRIC COORDINATE ACCURACY
REQUIREMENT (GROUND X OR Y) FOR WELL-

DEFINED POINTS. CLASS 1 MAPS LIMITING ROOT
MEAN SQUARED ERRORS (LE)

Typical map Scale LE [m]

1:50 0.0125
1:100 0.025
1:200 0.050
1:500 0.125
1:1000 0.25
1:2000 0.50
1:4000 1.00
1:5000 1.25
1:10 000 2.50
1:20 000 5.00

The objective of this paper is to analyze the ASLSM from
the perspective of the user’s and producer’s risk in order to
clarify its acceptance/rejection behavior. For this purpose we
will use an analysis methodology based on a simulation
strategy. Using the same methodology of simulation some
recent studies have analyzed the EMAS (Ariza et al., 2008) and
the NSSDA (Ariza and Atkinson, 2008b) offering information
about these characteristics of the aforementioned standard.
These are new aspects that have been never addressed before
for this kind of control methodologies. For this reason it is
interesting to develop the same analysis for the ASLSM in
order to obtain a similar degree of knowledge about its
specific acceptance/rejection behavior.

The ASLSM establishes a set of positional accuracy
requirements in the form of limiting root mean squared
errors (LE) for planimetry and altimetry. These LE depend
on the product scale. It is a very simple and functional
standard which offers a clear classification system based on
assessed product accuracy. The ASLSM was developed in
a period of transition from analogous to digital cartographic
systems, and the proposed computational method and
system of tolerances and classes can be applied to digital as
well as analogous data. This standard is still in use in the
US and has also been applied in other countries. So, despite
its age (20 years) and that the fact that it has been surpassed
by the NSSDA standard, we think it is interesting to analyze
its acceptance/rejection behavior. Furthermore, the NSSDA
allows data producers to use other standards such as the
ASLSM, if they are considered truly applicable to digital
geospatial data. Our study focuses on the planimetric case
and uses a unitary threshold (LE � 1 m), so that results can
be easily expanded to other values.

This document is organized into five main sections.
The first explains the methodology of the ASLSM in order
to highlight its major features. The next section presents
the simulation methodology. Once the simulation process
is known, it is applied in order to analyze the ASLSM
acceptance behavior when the positional uncertainty of the
product and the limiting error threshold of the standard are
the same (third section) or different (fourth section).
Finally the main conclusions are given.

The Accuracy Standards for Large Scale Maps Methodology
The ASLSM was developed during the 1980s by the Specifica-
tions and Standard Committee of the American Society for
Photogrammetry and Remote Sensing. It was intended as an
alternative to the NMAS for large scale topographic maps
(Merchant, 1987). As stated in ASP (1985), the interest in
spatial accuracy standards for large-scale maps was prompted
by a series of court decisions, in the sense that the lack of a
generally understood and accepted standard of map accu-
racy, in terms of quantifiable and verifiable error definitions,
was a primary factor in these litigations. During the 1980s
several drafts of the standard were published in order to
facilitate and encourage comments. The first (ASP, 1985)
showed a statistical methodology, based on compliance
testing, similar to that of the EMAS, which was developed at
the same time by the ASCE Surveying and Mapping Commit-
tee on Cartographic Surveying. The second draft (Merchant,
1987), which was finally approved in 1990 (ASPRS, 1990),
showed a different methodology, in which computations
were simplified because the ASLSM assessment was based on
an RMSE calculated for each coordinate (X and Y). This index
is easy to calculate and takes account of bias and dispersion
in a unique value. In fact, it is a double estimation process,
for the X and Y, and a double pass/fail test, but in this new
version, no statistical compliance tests were included. If the
absence of bias is considered, RMSE � s, the estimation of

an RMSE is similar to the estimation of a population standard
deviation. This estimator is a random variable with a specific
density function which depends on the sample size (n) and
the true value of s (Johnson et al, 2005).

Using the structure proposed by Giordano and Veregin
(1994), the ASLSM can be summarized as follows (the vertical
component is omitted in the explanation):

• Common applications: The ASLSM specifies the planimetric
accuracy of large scale maps as adopted and recommended
by the American Society for Photogrammetry and Remote
Sensing.

• Comparison method: The accuracy compliance is tested by
comparing coordinates of well-defined points on the product
to the coordinates of the same points as determined by a
check survey of higher accuracy (at least one-third of the
limiting error).

• Positional component - Planimetric: The X and Y coordinates
are evaluated separately.

• Class of control elements - Points: Well-defined points are
used for the control. This term refers to features that can be
accurately identified as discrete points. Points that are not
well-defined are excluded from the map accuracy test.

• Correspondence to accuracy levels: The standard estab-
lishes planimetric coordinate accuracy requirements (see
Table 1) for the X and Y, in ground units, for well-defined
points. These threshold values are mean limiting errors
stated as root mean squared errors. These requirements are
for the so called “Class 1 maps.” Products compiled within
limiting RMSE of twice or three times those allowed for a
Class 1 map shall be designated Class 2 or Class 3 maps,
respectively.

• Overview: The ASLSM establishes a methodology for the
assessment of positional error and for the classification of
the product. In relation to assessment, the quantification
of error is based on the RMSE derived from a sample of
control points. Some guidelines are given for the control
elements (well-defined points), the sample size, the sample
spatial distribution, and blunder management. In relation
to the classification, it is a multiple pass/fail classification
system defined upon a set of threshold values related to a
nominal map scale.

• Procedure: The main steps of the procedure are:

1. Select a sample size (n) of, at least, n � 20 well-defined
and well-distributed points both in the product and on the
ground.

2. For each point i calculate the discrepancies
between the coordinates of each point as determined from
the product and by the check survey:

.dyi � Yproduct; i � Ycheck; i

dxi � Xproduct;  i � Xcheck;  i,

(i � {l, Á n})
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Figure 1. Simulation process flowchart.

3. Calculate the RMSE for each coordinate:

.

4. For each coordinate, compare the assessed RMSE with the
LE or acceptance thresholds established by the standard
(Table 1) for the nominal scale of the product. The rules are:

• R1: If RMSE � LE the product can be classified, or
accepted, as Class 1 map,

• R2: If LE � RMSE�2�LE the product can be classified, or
accepted, as Class 2 map,

• R3: If 2�LE � RMSE �3�LE the product can be classified,
or accepted, as Class 3 map.

5. If the product was checked and found to conform to this
standard the following statement can be used: “This map
was checked and found to conform to the ASPRS Standard
for Class __ Map Accuracy.”

Simulation Methodology
Simulation for this project was used as the base tool for
analyzing the behavior of the ASLSM methodology in the
planimetric case. For our simulation we applied the Monte
Carlo Method. Simulation is an easy method to understand
because it is based on the reproduction of a known process or
system, so that theoretical aspects are obviated. Simulation
can be defined as the construction of a mathematical model
to reproduce the characteristics of a phenomenon, system or
process, using a computer in order to infer information or
solve problems (Ríos et al., 1997). There is no single pre-
scribed methodology under which simulation studies are
conducted. Most simulation studies follow four major steps
(Ríos et al., 1997): formulating the problem, developing the
model, running the model, and analyzing the output.

Our research focuses on the study of the acceptance or
classification of the estimated positional accuracy, but only
horizontal, of a GDB when applying the ASLSM to different
sample sizes. So we are going to replicate the ASLSM application
process under controlled circumstances by means of synthetic
populations of errors. Here some basic assumptions are made:

• In order to enable the generalization of results, synthetic
Normal ( , ) distributed populations of data are 
used as if they were positional errors of X and Y coordinates
derived from a control survey of higher accuracy. Notice that
the sub-index p in parameters means population. Note that
(a) it is considered that ASLSM controls are applied to GDBs
with no bias (mP � 0), which means that RMSEp � sp, and
(b) m and s units of measure are meters.

• The simulation does not work with simulated control
points distributed in a geographic space, but rather with
their simulated positional errors. This means that positional
errors and the spatial distribution of control points are
uncoupled. By means of this artifact, it is not necessary to
observe the spatial distribution of control points. Because
of this simulation, it is possible to imagine that the spatial
distribution of control points is always adequate, not
affecting the validity of results.

The model, or the simulation process, basically consists of
(Figure 1):

• Simulation of populations (A): Populations of well known
parameters ( , ) are derived from a controlleds2

P � 1mP � 0

s2
P � 1mp � 0

RMSEY � Sadyi
2

n

RMSEX � Sadxi
2

n
,

random values generation process. Single population values
are considered positional error values. The total of synthetic
populations that will be realized is NRSP.

• Simulation of samples (B): Samples of different sizes (n � 10,
20, 30, and so on) are randomly extracted from each popula-
tion. The ASLSM is applied to each sample as if it were a
single positional control test or assessment. For each sample
size NRSAM samples will be extracted for each population.

The Monte Carlo method is conceptually related to sam-
pling, so the number of times or runs (NR) a process must
be iterated can be derived from sampling recommendations.
Heuvelink (1998) presents a discussion on NR. Here NRSP � 100
and NRSAM � 1,000; so the total number of runs considered for
each sample size is NR � NRSP � NRSAM � 100,000; this in
order to obtain statistically sounder results with the lesser
variations of estimated deviations (stability), and because the
numerical load is not a problem here.

The output of the process is analyzed from the statisti-
cal computations (C in Figure 1). The process is essentially
variance estimation, but it is applied two times, one for
the X coordinate and another for the Y coordinate. After
this step, a multiple pass/fail test is applied (remember
Point�No. 4 of the ASLSM summary). Because the simulation
is performed using a Normal N( , ) distributed
population, the theoretical value to be estimated by the
ASLSM is RMSEX (theoretical) � RMSEY (theoretical) � 1.0 m. For
each sample size (n � 10, 20, 30, and so on) results values
of ASLSM are aggregated by deriving the mean value of
RMSEX and RMSEY, and the mean value of the deviation
(variability) of them, taking into account the total number
of runs (NR). Also the stability of the simulation process
(quality of the process) is assessed by deriving the variabil-
ity between populations.

For the analysis performed in the section dealing with
the case where uncertainty of the product and LE are
different, we also considered the possibility of different
population deviations, meaning different variational behav-
iors. In this case the simulation of populations (synthetic
generation of populations) is repeated for different values of
variance (labeled D in Figure 1).

ASLSM Acceptance Behavior when the Positional Uncertainty of the
Product and Limiting Error Threshold of the Standard are the Same
As stated in Point�No. 4 of the ASLSM summary, acceptance
comes from the comparison of the assessed RMSEX and
RMSEY of the sample with the LE indicated by Table 1 for

s2
P � 1mP � 0
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(b)

(a)

Figure 2. (a) Estimated mean values of RMSEx
(continuous light gray line) and RMSEy (dashed
dark gray line) (meters, vertical axis) for each
sample size (n, horizontal axis), and (b) Stability
(variability between populations) of the mean
value of RMSEx and RMSEy of Figure 2a.

(b)

(a)

Figure 3. (a) Estimated mean values of the
deviation of RMSEx and RMSEy (meters, vertical
axis) for each sample size (n, horizontal axis, and
(b) Stability (variability between populations) of the
mean value of the deviation of RMSEx and RMSEy
of Figure 3a.

the nominal scale of the product. Here we are going to
use an LE � 1 m as a general case. If we consider that the
sampling is representative, the assessed RMSE equals the
actual RMSE of the product. But the last is the result of a
production process, that is, a unique combination of tools,
materials, methods and people engaged in producing a
measurable output. We can thus speak about a process
capability index (Cp) which can be defined as the ability of a
process to meet its specifications, and it can be expressed
here as the ratio Cp � LE/RMSE. If RMSE �LE; it means that
Cp �1, and the process increases its probability in order to
meet its specifications. If RMSE �LE means that Cp �1 and
the process decreases its probability to meet its specifica-
tions. If Cp � 1 we are producing with the same quality as
expected, and here the random variations coming from
sampling will affect our final pass/fail decision.

The result of an estimation process can be expressed as
a mean value for the statistical estimator and its deviation
or variability from the mean value. Both mean and deviation
values are affected by sample size, but especially deviation.
High variability of an estimator means that the estimation is
not fine, and for a given case it can take values which could
create problems through the loss of accuracy incurred.
Results for our simulation process are shown in Figures 2 and 3:

• Figure 2a shows the estimated mean values for the RMSEx
(continuous light gray line) and RMSEy (dashed dark gray line)
as a function of the sample size (n), taking into account the
total number of runs NR. Both estimations are very similar in
value and in behavior in relation to the sample size.

• The stability (variability between populations) in both
mean RMSE values is depicted in Figure 2b. Both curves

(for X and Y) show a decreasing variability and greatly
reduced values, which means a high stability of the
simulation process.

• Figure 3a shows the estimated mean values of the deviation
(variability) of RMSEx and RMSEy as a function of the sample
size (n), taking into account the total number of runs NR.
This figure is very important because it shows the variability
of the estimation process. For instance, it shows that we
need 200 control points if we wish to limit the variability of
the estimation to �5 percent.

• The stability (variability between populations) in both mean
values of deviation is depicted in Figure 3b. With values
always less than 1 percent, Figure 3b also confirms a very
high stability for the simulation process

Because we are working with a simulation process based
on synthetic and controlled data, we know in advance the
actual RMSE and the class to which a GDB should be assigned
(in our case a Class 1 map). So the acceptance behavior
means the actual classification given by the standard in each
iteration of the simulation process. This classification is not
always the same as expected, and this is the important
behavioral characteristic we are interested in for this paper.
Figures 4 and 5 show the simulation results for the assigna-
tion to a Class 1 map.

• Figure 4.a shows the estimated mean probability of classifica-
tion into Class 1 as a function of the sample size (n), taking
into account the total number of runs NR. As can be observed,
the probability for each coordinate (X, continuous light gray
line, and Y, dashed dark gray line) approaches 50 percent
when n increases sufficiently. The value 50 percent comes
from the ASLSM definition itself. In our simulation and
acceptance processes we are producing populations with a
sP � 1, which implies an RMSE � 1 estimation and accepting
or classifying results as Class 1 map if actually RMSE �1.
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(b)

(a)

Figure 4. (a) Estimated mean values of probability
of classification into Class 1 (%, vertical axis) for
each sample size (n, horizontal axis) and for X, Y
coordinates separately (continuous light gray line
and dashed dark gray line) and together (continu-
ous black line), and (b) Stability (variability
between populations) of the mean values of
probability of Figure 4a.

(b)

(a)

Figure 5. (a) Estimated mean values of the devia-
tion of the probability of classification into Class 1
(%, vertical axis) for each sample size (n, horizontal
axis) and for X, Y coordinates separately and
together, and (b) Stability (variability between
populations) of the mean values of deviation of the
probability of Figure 5a.

Here the estimation of the RMSE is similar to the estimation
of a mean value of a population. The standard deviation
follows a N (0, 1) and the probability P(sP � � 1) � 50%.
When considering both coordinate pairs together, the global
value approaches 25 percent because of a double standard
deviation estimation. This value means independence
between both coordinates (P(sxP �1) � P(syP �1) � 0, 5 �
0, 5 � 0, 25). This situation is depicted in Figure 4a by the
continuous black line which is the final probability for
classifying into Class 1 map for populations distributed as
N (0, 1).

• Figure 4b shows the stability (variability between popula-
tions) of the mean probability value of classification into
Class 1 which is always below 2 percent.

• Figure 5a depicts the estimated mean value of the deviation
(variability) of the probability as a function of the sample
size (n), taking into account the total number of runs NR. It
is very close to 50 percent for each coordinate separately.
This value is obvious for the same reasons given above.

• Figure 5b shows the stability (variability between popula-
tions) of the mean values of deviation. As can be observed
these values are always less than 1 percent, which confirms
a great stability in the simulation process.

It is very important to notice here that the rest of the
cases are classified as belonging to the following class, which
means Class 2 maps in our case. These results evidence that
the ASLSM is very restrictive: we are working with syntheti-
cally created error populations belonging to Class 1, but the
standard assigns them to a lower class (Class 2). This means
that there is no user’s risk but a high producer’s risk. There is
no user’s risk, because we know that the errors of the product
are always distributed following a Normal distribution with

mP � 0 and , to which corresponds a Class 1 map
classification. When we accept a product as a Class 1 map it
always belongs to this class. There is a high producer’s risk
because an average of 75 percent of good products, products
whose error populations belong to Class 1 map, are rejected
as Class 1 maps and assigned to Class 2. This problem arises
because the process capability index equals one (Cp � 1).

At this point it is interesting to analyze the situation
for the minimum sample size (n � 20) recommended by the
standard. Figure 2a shows a sub-estimation of the RMSE but
only in the order of 2 percent, but Figure 3a gives us more
problematic information; the variability of estimations is
in the order of 20 percent, which is a significant value.
Regarding the classification process, here only 30 percent of
cases are classified as Class 1 maps and the complementary
70 percent as Class 2 maps when they actually are Class 1
maps. We obtain 30 percent instead of 25 percent because
the estimator of the RMSE is not an unbiased estimator, and
the bias correction factor is not included (Weisstein, 2008).
Regarding the variability of the classification process, it is
estimated at 45 percent, which is also very high. This is a
bad position for the producer because good products are
underclassified, and for the user because producers always
translate costs to buyers.

ASLSM Acceptance Behavior when the Positional Uncertainty of the
Product and Limiting Error Threshold of the Standard are Different
Until now we have worked under the assumption of having
a N( , ) distributed population of errors and
analyzed what can occur when estimating from a sample of
a given size n. Now we are going to analyze the behavior of

s2
P � 1mP � 0

s2
P � 1
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TABLE 2. VARIABILITY RATIOS AND CORRESPONDING POPULATION DEVIATIONS 
AND CAPABILITY INDEXES USED FOR TESTING THE ASLSM WHEN THE POSITIONAL

UNCERTAINTY OF THE PRODUCT AND THE LE THRESHOLD OF THE
STANDARD ARE DIFFERENT

Population Variability
Deviation (D) ratios

LE [m] [m] [%] Capability index Cp

1 0.80 �20% 1.25
1 0.85 �15% 1.18
1 0.90 �10% 1.11
1 0.95 �5% 1.05
1 0.98 �2% 1.02
1 0.99 �1% 1.01
1 1.00 0% 1.00
1 1.01 	1% 0.99
1 1.02 	2% 0.98
1 1.05 	5% 0.95
1 1.10 	10% 0.91
1 1.15 	15% 0,87
1 1.20 	20% 0.83

Figure 6. Acceptance curves for the ASLSM (%, vertical axis) for each sample size
(n, horizontal axis). Each curve is labeled with its Cp value. Dark gray color of the
background represents the user’s risk (below the curve with Cp � 1.0). Light color
of the background represents the producer’s risk (above the curve with Cp � 1.0).

the ASLSM when expecting N( , ) distributed
population but actually working with other normal
N( , ) distributed population where D 
 1.
In this way we are going to analyze the influence of the Cp
in the classification assigned by the ASLSM estimations, and
this analysis will allow us to derive the acceptance curves
for the same.

For this analysis we have used a simulation process
similar to that mentioned above, but changing the variation
behavior when creating random populations. So a set of
normally distributed populations has been synthetically
created following a N( , ), where D � 0.8; 0.85;
0.9; 0.95; 1.00; 1.05; 1.10; 1.15, and 1.20. For each synthetic
population a thousand samples of different sizes (n � 10,
20, 30, and so on) were extracted. The ASLSM was applied to
each sample as if it were a single positional control test.

The different values of D can be considered, in relation
to D � 1 m, as variability ratios implying a detected nominal
accuracy value when applying the ASLSM, and vice versa.
This idea is presented in Table 2.

s2
P � D2mP � 0

s2
P � D2mP � 0

s2
P � 1mP � 0

In order to understand the acceptance index in the
form of probability (percentage) we consider the following
rules:

• If D � 1, the accuracy of the population is better than
expected (Cp � 1), and this means that it would be consid-
ered as satisfactory or accepted. So when performing the
simulation, we will take into account the number of cases
where {RMSEX �1 m and RMSEY �1 m} and so results in a
Class 1 map. The number of such cases will be expressed as
an acceptance percentage of total cases.

• If D � 1, the accuracy of the population is worse than
expected (Cp � 1), and this means that it would be
considered as not satisfactory or rejected. So when
performing the simulation, we will take into account the
number of cases where {RMSE � 1 m and RMSEY � 1 m}
and so results in a Class 1 map classification. The number
of such cases will be expressed as an acceptance percent-
age of total cases.

The results of this process are presented in Figure 6,
which shows a family of curves we call acceptance curves.
The horizontal axis corresponds to sample size (n), the vertical
to percentage of acceptance (%) and the labels to Cp. The
wider black curve in the middle (labeled 1.00), corresponds to
the case where D � 1, a previously studied situation where
population follows a N ( , ). Here it can be
observed that this curve is somewhere above 25 percent. This
has been commented on previously. Curves above the wider
line correspond to those cases were D � 1, labeled 1.01 up to
1.20, and curves below to those where D � 1, labeled 0.99
down to 0.80.

Figure 6 shows the general acceptance behavior of the
ASLSM standard. When D �1 (Cp � 1) quality is better
than expected (lesser variability), and user acceptance
increases when sample size n also increases. Here there is
a risk for the producer because the product is good enough
in variability but is not accepted in a percentage that
equals 100 percent minus acceptance (%) (a good product
can be rejected in this percentage). On the other hand
when D �1 (Cp � 1) quality is worse than expected
(greater variability), user acceptance is at risk (a bad
product can be accepted in this percentage), but the risk
decreases when sample size n increases. Figure 6 also
shows that however lesser or greater the deviations are in

s2
P � 1mP � 0
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TABLE 3. NUMBER OF MAPS (%) BELONGING TO A CLASS OF THE ASPRS STANDARD IN RELATION TO THE SAMPLE SIZE 
AND THE CAPABILITY INDEX CP

Cp

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Sample % � % � % � % � % � % � % � % � % �
size (n) Class 2 Class 2 Class 2 Class2 Class 2 Class 1 Class 1 Class 1 Class 1

10 30.8 72.6 93.1 94.5 86.5 31.7 52.5 71.7 85.3
20 28.8 83.4 98.7 98.6 91.5 29.3 59.5 82.7 95.0
30 27.9 90.3 99.8 99.6 94.4 29.3 64.7 89.3 98.3
40 27.9 94.4 99.9 99.8 96.6 28.5 69.8 93.9 99.4
50 27.5 96.8 99.9 100 97.4 27.7 73.7 96.1 99.8
60 27.1 98.1 100 100 98.5 27.4 77.2 97.5 99.9
70 27.1 98.9 100 100 98.8 27.4 80.7 98.5 99.9
80 27.0 99.2 100 100 99.1 27.1 83.7 99.1 100
90 27.0 99.6 100 100 99.4 27.2 85.8 99.5 100
100 27.5 99.7 100 100 99.6 27.6 87.2 99.7 100
150 26.7 100 100 100 100 27.0 94.5 100 100

200 26.6 26.6 98,1
250 26.8 26.7 99,2
300 26.7 26.7 99,9
350 25.9 100 100 100 100 26.7 100 100 100
400 26.3 26.7 100
450 26.6 26.6 100
500 27.0 27.0 100

The 
remaining 
samples �
to the Class: 3 3 3 1 1 2 2 2 2

relation to the expected, the smaller sample size is needed
for a given acceptance or rejection risk.

One example can help to understand the above. Let us
consider a batch of products to which the ASLSM is
applied. If the positional error of the product follows a
N (m � 0, s2 � 0.952) and we expect a behavior of a 
N (m � 0, s2 � 12), the variability of this data is 5 percent
less than expected (it means it is 5 percent better) and
the acceptance follows the curve of Figure 6 labeled 1.05.
For this situation, if the sample size of control points is
n � 100, the percentage of acceptations in the batch is on
average in the order of 60 percent, which also means a
risk of 40 percent for the producer, because the product is
actually better than expected. Consider now a product
whose variability is about 10 percent less than expected
(it means it is about 10 percent better) and the acceptance
follows the curve of Figure 6 labeled 1.10. For this situa-
tion, if the sample size of control points is n � 200, the
percentage of acceptations in the batch is on average
in the order of 95 percent, which also means a risk of
5 percent for the producer.

In general, all the curves of Figure 6 below the wider
black curve in the middle (labeled 1.00) represent user’s
risk (background in dark gray color). For example, consider
a product whose positional errors follows a N (m � 0, 
s2 � 1.052), and where we expect a behavior of a N (m � 0,
s2 � 12), the variability of this data is 5 percent more than
expected (it means it is 5 percent worse), the capability
index Cp is 0.95, and the acceptance follows the curve
labeled 0.95. For this situation, if the sample size of control
points is n � 50, the percentage of acceptations in the batch
is on average in the order of 11 percent, which is the risk
of the user.

In industrial processes the producer’s and user’s risk are
commonly limited to 5 percent or 10 percent, respectively.
So bearing our curves in mind, unless the difference between

the actual and expected variability is greater than 15 percent,
the sample size provides the best protection for the interests
of both producer and user. This can be seen from a different
point of view: the interest for the producer to create GDBs
with positional accuracies at least in the order of 15 percent
better than the stated threshold for the assessment, and thus
to reduce his rejection risk, which is the same as increasing
the capacity of his production process. This also allows
a reduction of the sample size of the positional accuracy
assessment. So there is a need for an agreement between the
user (acquirer) and the producer in order to decide where to
direct the resources: to control or production. For particular
cases the answer comes from the cost functions of both
processes. In general, the solution is quality assurance in
production and reduction of controls.

As stated in the previous subheading, it is very
important to notice that the rest of the cases are desig-
nated as belonging to other classes. Table 3 shows the
assignation given by the ASLSM when applied to the same
cases used for compiling Figure 6. It is a complementary
view of this figure. For each sample size, the other
columns show, for values of LE from 0.5 to 1.3, the
acceptance or classification percentage for the indicated
class (row below Cp) under the supposition of populations
distributed as a N (m � 0, s2 � 12). The last row of Table
3 indicates the alternative class assigned. Classification
occurs always between two adjacent classes, for instance,
between Class 1 and Class 2 or between Class 2 and Class
3. Classification between Class 1 and Class 3 is very
improbable. From the column with Cp � 0.8 to the right of
the table we can see how the classification into Class 1
maps increases as Cp increases. It is interesting to notice
that the column corresponding to Cp � 0.5 shows the same
behavior as the column with Cp � 1.0, but assignations
occur between Class 2 and Class 3, instead of between
Class 1 and Class 2.
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Conclusions
The behavior of a methodology should be known for its appro-
priate application. As with other positional accuracy assessment
methodologies, the ASLSM does not give any information about
that. By using a simulation-based methodology the ASLSM
classification estimation behavior has been analyzed. The
statistical analysis is based on the use of normal distributed
synthetic populations, which ensures the control of the process,
the generality of results and their easy applicability to real cases.
The main conclusions derived from our research are:

• The ASLSM is based on a double estimation process of standard
deviations (X and Y coordinates). These estimations are similar
to the general estimation process applied to mean values.

• Classes of map accuracy are established using a mean
limiting error calculated as a RMSE, but no advice is given
about the relation between a product RMSE and the limiting
error to consider for the ASLSM application. This relation
(LE/RMSE), named here as the process capability index is the
key factor for understanding the ASLSM behavior.

• If LE equals the RMSE of the population, the ASLSM has a
very restrictive behavior, classifying 75 percent of products
as Class 2 maps instead of Class 1 maps.

• For the minimum proposed sample size (n � 20 points),
and under the hypothesis LE � RMSE, only 30 percent of
cases are classified as Class 1 maps and the complementary
70 percent as Class 2. This is a bad position for the producer
because good products are labeled as having lower accuracy.

• In order to obtain at least a 95 percent of acceptance we
need a product which satisfies (a) the ratio LE/RMSE � 1.20
and a sample size of 50 points, (b) the ratio LE/RMSE � 1.15
and a sample size of 100 points, and (c) the ratio 
LE/RMSE � 1.10 and a sample size of 200 points.

• If the variability of the population is greater or lesser than
expected the behavior of the ASLSM results is depicted by a
family of acceptance curves. These curves can be entered
using the relation LE/RMSE, so that they can be considered
of general application.

• Acceptance curves can be employed by users to determine
the sample size for limiting their acceptance risk, but also by
producers to analyze the tradeoffs between their product’s
quality and acceptance ratios in order to decide and establish
the capacity of the production process.
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