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Abstract: A simulation process is implemented in order to generate synthetic populations of positional-planimetric errors and later, by a
bootstrap process, a family of acceptance curves �nomogram� has been derived. These curves allow us to learn the acceptance level, or
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Acceptance curves allow us to report user’s risk and to determine the adequate size of the sample in order to reduce this risk to a desired
level.
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Introduction

The positional accuracy of cartographic products has always been
of great importance. It is, together with logical consistency, the
quality element �ISO 2002� of geographic information most ex-
tensively used and evaluated by the national mapping agencies
�Jakobsson and Vauglin 2002�. Good positional quality is needed
when using two different geographic databases. Different posi-
tional behaviors of geographic data sets mean the existence of
interproduct positional distortion and a barrier to interoperation
�Church et al. 1998�. This barrier is not only positional and geo-
metrical but also thematic, being greatly affected by position
�McGwire 1996; Carmel et al. 2001, 2006�. In the information
society where global positioning system �GPS� devices are
broadly used by citizens in conjunction with digital cartographic
products, everybody is able to obtain coordinates, and in some
way to control or test cartographic products. Thus, positional ac-
curacy is now a paramount factor for mapping agencies.

Positional quality is one of the components of geographic data
�Morrison 1995�, and is determined by positional accuracy. Qual-
ity can be defined as “fitness for use” �Juran and Gryna 1970�, so
from the positional perspective several definitions can be estab-
lished in accordance with user’s interests �DOD 1990�: absolute
and/or relative accuracy, horizontal/vertical accuracy, and so on;
but the statistical aspect is present in all of them.

Given that positional quality is essential in cartographic pro-
duction, all mapping agencies have used statistical methods for its
control. These controls are applied to geographic databases
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�GDBs� or cartographic products, and we call them positional
control tests �PCTs�. Among the different methods used, we can
highlight the National Map Accuracy Standard �USBB 1947�, the
Engineering Map Accuracy Standard �ASCE 1983�, the Accuracy
Standards for Large Scale Maps �ASPRS 1989�, or the more re-
cent National Standard for Spatial Data Accuracy �FGDC 1998�.
These PCTs can be used as a basis for specific procedures of
positional quality control within a quality management system
such as ISO 9001 �ISO 2000�.

Since the late 19th century quality control techniques have
been developed focusing on industrial activities, producing nu-
merous methods for the statistical control of processes �e.g., lot

plot, P, X̄, and S graphics, etc.� �Hansen and Ghare 1990� �see a
cartographic example in Simley 2001�. According to Pyzdek
�1989� quality control is the science of discovering and control-
ling variation. The purpose of quality control is to establish and
maintain conformity of the products with design requirements,
mainly expressed as standards or specifications. One of the most
important aspects of statistical quality control is the acceptance
control of products. In these cases, the final product is studied
without taking into account the production process; it is a “black
box” type analysis in which both acceptance and rejection are
decided considering statistical criteria.

Industrial products are usually controlled by their attributes
�ISO 1999� or by variables �ISO 2005� mostly considered as one
dimensional. Cartographic positional quality control presents cer-
tain specific peculiarities which require a different treatment so
that methods designed for and introduced into industries are not
adequate for their direct application to positional acceptance or
rejection of cartographic products.

As in industrial acceptance processes, positional control is
based on sampling. PCTs can be used as tools for acceptance
quality control of GDBs coming from suppliers. When acceptance
sampling is performed in industry a sampling plan is required in
order to establish and make explicit to both producer and acquirer
�user� the conditions of the process: Definition of lot, lot size,
sampling method and size, producer’s and user’s risk, cost, etc.
�AEC 1990�. All of these should be stated in the supply contract
for GDB. An operating characteristic curve is an analytical or
graphical expression of the statistical aspects of a sampling plan,

which is also the foundation of such very important standards as
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ISO 2859-1 �ISO 1999�. Despite this, references to operating
characteristic curves application to spatial data quality are very
scarce. Caspary and Joos �2002� make an abridged presentation
with an interesting linking to cost and Ariza �2002� points out its
use for positional controls. In order to understand our methodol-
ogy, developed specifically for the planimetric case, both the
bases of the quality control in reception and our proposed posi-
tional control methodology are presented in the next two subsec-
tions. Later we deal with the simulation methodology applied in
order to derive the acceptance curves, and this mainly consists of
a two step simulation process: Population simulation and posi-
tional control simulation upon subsamples. The result can be
graphically expressed as a nomogram, so the results section is
devoted to explaining this nomogram and an example is included
in order to show how to use the nomogram as well as the benefits
of applying this methodology. Finally the main conclusions are
stated.

Quality Control in Reception

When buying a lot of products, the best way to decide whether or
not to accept it is to check 100% of the elements. However, this is
not always possible because of the cost or because, for some
products, the only way to check quality is by destruction �Bester-
field 1994�. For this reason it is very common to use statistical
sampling methods called sampling plans for random checking.

The decision from an investigated sample on whether or not a
lot is satisfying stated requirements can be carried out through
hypothesis testing. A statistical hypothesis is a statement about the
values of the parameters of a probability distribution. In statistical
testing two alternatives are always considered: H0: so-called Null
Hypothesis and H1: so-called Alternative Hypothesis.

In the case of geodata, H0 gives the quality M0 a customer
would expect, whereas the H1 refers to the lowest quality M1 a
customer can accept for his particular application �Caspary and
Joos 2002�, but here there is a very important assumption: Data
were produced by an in-control process. This means that the
process has the capability to produce within the stated tolerances,
and process capability is directly related to process variability
�Montgomery 2001�.

As sampling is a random procedure, two kinds of errors may
be committed when testing hypotheses. If the null hypothesis is
rejected when it is true, then a Type I error ��� has occurred. If
the null hypothesis is not rejected when it is false, then a Type II
error ��� has occurred. A Type I error is called producer’s risk
because it denotes the probability that a good lot will be rejected,
or the probability that a process producing acceptable values of a
particular quality characteristic will be rejected as performing un-
satisfactory ones. Type II is called consumer’s risk because it
denotes the probability of accepting a lot of poor quality. But
sometimes it is more convenient to work with the power of the
test �Montgomery 2001�, which is the probability of correctly
rejecting H0 �Power=1−�= P�reject H0 /H0 is false��.

When testing statistical hypotheses the general procedure is to
specify a value for � and then to design a test procedure so that a
small value of � is obtained. Thus, the producer’s risk is directly
controlled or chosen by � and the consumer’s risk is generally a
function of sample size and is controlled indirectly. The larger the
size of the sample, the smaller the consumer’s risk �Montgomery
2001�.

A sampling plan is defined by �AEC 1990�: the lot size N,

sample size n, sampling method, acceptance Ac, and rejection Re
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values. The behavior of a sampling plan can be expressed in terms
of its operating characteristic curve �Caspary and Joos 2002�. The
operating characteristic curve is a graph which shows � as a
function of the difference d between M0, which corresponds to
H0, and the actual value Mactual derived from the sample �Hansen
and Ghare 1990�. The larger the difference, the smaller the con-
sumer’s risk. But � can also be plotted against a ratio of devia-
tions �Montgomery 2001�, e.g., the process standard deviation to
the actual standard deviation derived from the sample. For a de-
tailed discussion of the use of operating characteristic curves,
refer to Hines and Montgomery �1990� or Montgomery and
Runger �1999�, or other general quality control manuals such as
in Hansen and Ghare �1990�, Besterfield �1994�, Sebastián et al.
�1999�, and Montgomery �2001�.

Positional Quality Control

All mapping agencies use statistical methods for positional accu-
racy assessment and control, stated generally in the form of stan-
dards, which have mainly been extended in their application to
the extent of their influence area. Standards are very important
because they mean technology but also an economic optimization
of the quality of geographic information �Krek and Frank 1999�:
with a quality standard the producer provides the product accord-
ing to the known specification and characteristics, as defined in
the standard. This assures a certain level of reliability and cer-
tainty, allowing the buyer to avoid excessive measuring of quality
and thus reducing the measuring cost and shortening the buyer’s
decision-making process.

A process or a production system that is under control pro-
duces an output flow that is characterized as a random or stochas-
tic process; it is stable and predictable, so the quality of the output
is known to deviate from a target value �the standard� within well
defined limits �Deming 1986�. The variation in a stable process is
said to be due to common or chance causes and its level limited to
a tolerated amount. In order to maintain a process under control it
is necessary to detect and remove special, or assignable, causes of
the process which engender nonrandom patterns of variation or
greater patterns of variation. The main objective of statistical
quality control is to determine whether variations are due to com-
mon causes or to special causes that require corrective action. In
this sense, quality control is essentially concerned with variation
�Schmidley 1997�.

The previous idea can be more or less easily recognized in
standard methodologies �e.g., USBB 1947; ASCE 1983; ASPRS
1989; FGDC 1998; and so on� used for specifying spatial data
products and the resultant positional accuracy compliance criteria.
From our point of view, the standard that performs best for a
positional quality control of a GDB is that which has a sound
statistical basis, and also gives more information about the pro-
cess. This enables us detect problems and then find their root
causes and eliminate them, thus maintaining the process under
control. For this reason we like to be informed of the existence of
systematic errors �bias� and of the variations of the process. The
most appropriate statistical methodologies for detecting both
behaviors are two commonly used statistical hypothesis tests
�Caridad 1985�: The first for bias by means of a t-student test, and
the second for precision or variation by means of a chi-squared
test. Each test must be applied to the X and Y planimetric com-
ponents, so four tests are performed: TX, TY, chiX

2 , chiY
2, and it is

necessary to pass all of them in order to consider that the GDB is
2
accepted. The same two tests TZ, chiZ will be applied for the Z
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�altimetry�, but here we only consider the planimetric case be-
cause the Z case is a simple one. Our preference basically coin-
cides with the proposal of the ASCE �1983� and Sevilla �1991�.
We have only introduced two considerations: �1� verification of
basic needed hypotheses �randomness and normality� and �2� the
Bonferroni corrections �Bonferroni 1935; Miller 1991� for the �
levels in each test in order to attain a global significance of 5%.

Thus the proposed statistical procedure is based on two main
hypotheses: Randomness and normality of positional errors; and
both should be checked. The assumptions of randomness and nor-
mality are very common in statistical testing, and also when deal-
ing with positional controls, but are rarely performed perhaps
because they are easily accomplished by data, or because of the
additional problems with performing two statistical tests �Atkin-
son 2005�. Obviously, both tests should be passed before the ap-
plication of bias and variability tests. Randomness means that
errors follow a random behavior with independence of their dis-
tribution. Randomness can be checked through different statistical
tests like the runs test, also called the Wald–Wolfowitz test
�Caridad 1985�. As Simley �2001� points out, Shewhart �1931�
recognized that quality measurements in general fracturing were
distributed normally. Despite the fact that some works, like those
of Thompson and Rosenfield �1971� and of Gustafson and Loon
�1982�, indicate that errors are not normally distributed, many
other researchers, like Mikhail �1976� and Goodchild and Gopal
�1989�, consider that random variables that represent measure-
ments in cartography, photogrammetry, geodesy, or surveying are
often nearly normally distributed. Normal distribution of errors is
a common explicit or inexplicit assumption in many statistical
models dealing with positional errors like the works of Li �1991�,
Shi �1998�; Leung and Yan �1998�, or Shi and Liu �2000�. Nor-
mality of data can be verified by means of a general test such as
Kolmogorov Smirnof or more specific such as D’Agostino-
Pearson.

As mentioned previously, the process applied in our work has
only been developed for planimetric control, and is as follows:
• Step 1: Sample size. Determine a sample of size “n” of “well

distributed” and “well defined points.”
• Step 2: Error estimation. Compute the difference between po-

sitions of points on the product and on the source of higher
accuracy. Field units are used �e.g., meters�

exi = xTrue i − xGDB i �1a�

eYi = yTrue i − yGDB i �1b�

• Step 3: Hypothesis fulfillment. Compute statistical tests to
verify randomness and normality of error data.

• Step 4: Mean and deviation. Compute the average error
��X ,�Y� and deviation �SX ,SY� for each component

�X =
1

n�
i=1

n

exi �2a�

�Y =
1

n�
i=1

n

eYi �2b�

Sx =� 1

n − 1�
i=1

n

�exi − �x�2 �3a�

1
n

2
SY =�
n − 1�

i=1

�eYi − �Y� �3b�
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• Step 5: Estimate Bias. Compute observed t-student
�TOBS X ,TOBS Y,� statistic for each component

TOBS X =
�X

�n

SX
�4a�

TOBS Y =
�Y

�n

SY
�4b�

• Step 6: Estimate Variability. Compute observed chi-square
��OBS X

2 ,�OBS Y
2 � statistic for each component

�OBS X
2 =

SX
2�n − 1�

�X
2 �5a�

�OBS Y
2 =

SY
2�n − 1�

�Y
2 �5b�

• Step 7: Threshold values. Obtain from a table or appropriate
analytical function the threshold values Tn−1,�/8 and �n−1,�/4

2 for
the t-student and chi-square ��2� distributions.

• Step 8: Pass/Fail. The GDB pass the complete test with 95%
confidence if the following four tests �TX ,TY , chiX

2 ,chiY
2� are

passed.
For bias, the hypothesis is H0,bias :�=0.

If�TOBS X� � Tn−1,�/8 → PASS for bias in X

If�TOBS Y� � Tn−1,�/8 → PASS for bias in Y

For variability, the hypothesis is H0,Variability :S��.

If��OBS X
2 � � �n−1,�/4

2 → PASS for variability in X

If��OBS Y
2 � � �n−1,�/4

2 → PASS for variability in Y

As can be observed, Steps 1–7 are basic computations of the
methodology; the statistical tests are stated in the eight step
whose interpretation is as follows:
• The mean error � is an estimation of bias in the population �or

product�. Our interest is that bias will be zero, in a statistical
sense. So the null hypothesis is stated as: H0,Bias :�=0. If the
H0,Bias is rejected we must look for the causes of bias and
eliminate them.

• The standard deviation S of the sample is an estimation of the
population �or product� variability �. Here our interest is that
sample variability will be lower, or at least equal, to the sup-
posed variability of the population �product�. The null hypoth-
esis is stated as: H0,Variability :SGDB��. This is a new basic
hypothesis of the method and also a crucial one because, as
stated before, quality control is essentially concerned with
variation. The numerical result proposed by Eqs. �5a� and �5b�
is �n-1� times the ratio between the observed variability SGDB

and the supposed �. If this expression is significatively greater
than n-1 it implies that there is a greater variability in sample
and, in consequence, H0,Variability is rejected and causes of this
situation should be analyzed and eliminated in order to bring
the process under control. On the contrary H0,Variability is ac-
cepted and it implies that SGDB=�, or that there is a lower
variability in sample �SGDB��� which implies better quality
in the GDB than expected. Here the process is under control
but causes can also be analyzed for discovering good prac-
tices. The last is very important for a producer because it is,

some what, related to a measure of the quality of the process
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through the so-called process capability index: a measure of
the ability of the process to produce products that meet the
specifications �Montgomery 2001�.

Development of Acceptance Curves

In this section we show the methodology that, based on simula-
tion, has been developed to obtain an operating characteristic
curve for an acceptance process based on the proposed control
methodology. The objective is to obtain a tool that will allow us
to decide on the acceptance or not of a subcontracted GDB from
a positional point of view. Against the simple acceptance or re-
jection derived from any positional test, this method informs us
about the assumed levels of risk �user and producer� and about the
size of the sample that has to be adopted to reduce those levels of
risk. As previously commented, the process has been developed
solely for planimetry. The simulation methodology comprises two
main steps:
1. Simulation of populations. Synthetic populations of well

known parameters are derived from a controlled statistical
random values generation process. Population values are
considered to be positional error values.

2. Simulation of samples. By means of a bootstrapping process,
samples of different sizes are extracted from each population.
Our method is applied to each sample as if it were a single
positional control test, but results are aggregated.

The process begins with the generation of random populations of
normal distributed values �N ��P=0,�P

2 =1�, where “P” means
population� according to the Box–Muller method �Box and

Fig. 1. Flow diagram of the sample simulation process �partial
process simulation�
JOURN
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Muller 1958�. The fulfillment of the hypothesis is verified by
means of an adherence test to the Normal distribution
�Kolmogorov–Smirnov� and a test of randomness �Wald–
Wolfowitz� �Caridad 1985�.

By the previous statistical method two populations Px and Py

are created, each one with NPx=NPy =1,000 values. Both of these,
Px and Py, work as a database of simulated planimetric errors for
the components X and Y. From the previous populations, and for
each planimetric component, i different p samples are obtained at
random, each one with m elements �m=10,20,30,40, . . . �, de-
noted px�i�m and py�i�m, respectively. Both of them, px�i�m and
py�i�m are treated as if they were the errors found in i different
samples of 10, 20, 30, … up to 500 well-defined points measured
in a GDB and in a more precise survey. For the robustness of the
process i takes a large value, in this case i=1,000.

The proposed test will be applied to all of these i samples to
determine the acceptance or rejection of the product from a posi-
tional point of view. Previous to using the test it is necessary to
fix its threshold values: �1� global significance level ��=5% �; �2�
absence of systematic errors ��x=�y =0�; and �3� assumed disper-
sion behavior ��=1,0.95,0.9, . . . . � of the population. Fig. 1
shows the flow diagram of the sample’s simulation process. Be-
cause of the previous process’s depending on only one synthetic
population, in order to ensure the statistical robustness of the
whole process a new simulation step is considered. Now we gen-
erate j random populations Px�j� and Py�j�, each one with 1,000
normal typified distributed values using the techniques and con-
trols previously described. Fig. 2 shows the flow diagram of the
population’s simulation process where the sample’s simulation
process is included.

Results

The main result of the simulation is a family of curves that can be
expressed graphically as is shown in Fig. 3, but also analytically.

Fig. 2. Flow diagram of the population simulation �global process of
simulation�
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We call the graphic expression a nomogram. These curves are
only controlled by the variational features of the GDB in relation
to the expected or supposed one, and bias does not affect these
curves because it can be removed. These curves show the power
of the battery of statistical tests applied together. For a given ratio
between the actual deviation of the GDB �SGDB� and the deviation
assumed in the control ���, the nomogram represents the evolu-
tion of acceptance levels in percentage, depending on the number
of control points used. In a certain way the ratio � /SGDB is similar
to the capability of a process in the statistical control of industrial
processes.

The ratio � /SGDB takes values greater or equal to one when the
variation of data of the GDB is lesser than the variation consid-
ered in the control ���SGDB�, which means, in other words, that
the product has enough quality, or that the process is under con-
trol. For this case the nomogram shows a curve which is practi-
cally horizontal �line labeled with 1.0� at 95% acceptance level
�Al=95% �. The interpretation is easy, the product is good enough
and it is accepted in 95% of control cases. There is no risk for the
user but a 5% producer’s risk. The product is good but it is re-
jected. This is the Type I error which occurs in 5% of the cases
�the significance level�. The 95% acceptance level is derived from
the global significance of the complete test. Of course if �
	SGDB the producer’s risk will decrease but producer and user
must consider the potentially higher cost of such process.

The ratio � /SGDB takes values less than one when ��SGDB,
which means that the product does not have enough quality, or
that the process is out of control. For this case the nomogram
shows several curves, labeled with the deviation ratio �0.975;
0.95; 0.925; …�. These curves show the evolution of the product’s
acceptance levels depending on the size of the sample. Now the
interpretation is that the product is not good enough, but it is
accepted in a variable percentage of cases depending on the size
of the control sample. Thus, the acceptance level acts here as a
user’s risk because a bad product is accepted on average as many
times as the acceptance level points out.

Regarding the nomogram’s curves, it can be observed that the
lower the size of the sample the closer these curves are placed and
also the higher values of acceptances are obtained. This indicates
higher uncertainty but also a situation that favors the producer’s

Fig. 3. Nomogram; acceptance curves for ratios � /SGDB=
position. Obviously, if we desire a higher level of security, and
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also to reduce the user’s risk to a desired level, we should in-
crease the size of the control sample.

Another interesting characteristic of the nomogram is that the
stability of its curves is very high because of the process of simu-
lation itself, in which a high number of simulations have taken
place. The represented curves give a maximum variability of
±0.75%. The nomogram has been derived by a simulation process
in which deviation of population has always been set to one
�SGDB=�P=1�, and the deviations � considered for the control
�Steps 6 and 8� have taken different values from 0.7 to 1, with a
step of 0.025 units. For this reason, the nomogram can be consid-
ered typified and valid for any value. So generic acceptance
curves have been achieved for different � /SGDB ratios and sam-
pling sizes.

Let us observe two examples of the use of the nomogram,
when there is or is not a situation of user risk:

Case 1: Consider we have a GDB for a vegetation change
analysis study and that what we consider an acceptable uncer-
tainty for this use �product specifications� is a variability of 4 m
��=4 m�. For the positional control of the planimetry we develop
a GPS field survey from which we obtain a sample of n=25
well-defined points. This sample characterizes statistically the
product with the following values: �GDB�0 m �there is no bias or
it has been adequately eliminated�; SGDB=3.5 m. Now we have to
typify our values in order to enter into the nomogram. This is
achieved by computing the ratio � /SGDB=4 /3.5=1.143. This
value is greater than 1 and means we have data of good quality
because the maximum acceptable error is 14.3% greater than the
error we have assessed. In this case we are over the horizontal
line of the nomogram which is labeled with A. This means we are
protected by the quality of our data independently of the sample
size. There is no user risk, the producer has a process with enough
capacity and here the only question is the cost of the over-quality
production for the producer and user.

Case 2: Consider we have the same GDB as the previous ex-
ample but now the proposed use is a little more exigent and
tolerates an uncertainty no more than 3 m ��=3 m�. Also we use
the same GPS field survey as in the previous case. In order to
typify our values we compute the ratio � /SGDB=3 /3.5�0.85.
This value is lesser than 1 and means you have data of poor

.75; . . . ,0.95;1 for different size of samples n� 	10,150

0.7;0
quality because the maximum acceptable error is 15% �1.0
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−0.85=0.15� less than the error we have actually assessed. In this
case we have to look in the nomogram for a curve labeled with
this value �0.85�, or interpolate it. This means we are in a risk
�user risk� whose probability depends on the sample size used to
assess the positional accuracy of our data. For our case where
n=25 this curve shows approximately 68% of acceptances which
actually is a high risk for the user, because the quality of the GDB
is poorer than expected. If we wish to reduce this risk to a lower
value, let us say 5%, the nomogram indicates that we need to use
at least 150 control points. As is shown in both examples, the use
of our methodology always implies the use of our own estimate of
what is an acceptable error or of the specifications of the product
being controlled.

The previous examples are based on a single sample, and
allow us to obtain one-point estimation on the nomogram. A more
appropriate use of the nomogram can be realized if bootstrapping
techniques are applied in order to obtain a robust estimation of the
statistical parameters of the sample and, in this way, of the accep-
tances. Here the process is similar to that described in the second
step �simulation of samples� of the proposed methodology for the
development of the acceptance curves. The control sample of size
n works as population, and the bootstrap allows us to obtain for
each different sample size n�, with n��n, an estimation of the
acceptance, which actually is a function of n�. These values of
acceptances can be plotted on the nomogram, defining a curve
which will show the evolution of the expected acceptance for that
GDB under the production process that the producer employs for
a given product.

From our point of view, this methodology and its expression in
a family of curves have some important advantages for positional
control:
• They allow user and producer to learn the capacity of the

process;
• They make explicit to the user the type II error level for a wide

range of � /SGDB ratios and sample sizes;
• They indicate in a very clear fashion the high level of user risk

when working with small sample sizes;
• They inform the user of the sample size needed in order to

reduce risk to a desired level.

Conclusions

The concept of operating characteristic curves, which is used in
industrial statistical quality control, has been applied to a specific
positional-planimetric control test, but it could also be applied
successfully to other positional control methodologies. All the
development set out in previous sections is based on statistical
theory, that is to say that results are valid as long as basic hypoth-
eses are followed.

Through a simulation process and a bootstrap procedure, we
have derived a family of curves, or nomogram, which shows the
evolution of acceptance levels depending on the number of con-
trol points used and on the ratio between the deviation � assumed
for the control and the actual deviation of the GDB, SGDB. The
ratio � /SGDB exerts a strong control over the acceptance process
and plays a role similar to a process capability ratio in an indus-
trial process.

The nomogram has been obtained by means of simulation with
typified values, so that it can be considered typified, or general,
because it depends only on the ratio of deviations between the
deviation established for the control and that actually observed

from the GDB. The result tells us the risk level that the user
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assumes by accepting a GDB but also informs us about the size of
the control sample that should be used to reduce this risk level to
a value that the user considers satisfactory. As a final remark, it is
our opinion that the application of concepts of industrial statistical
control to spatial data can give a great deal of insight to a very
important cartographic process.
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Notation

The following symbols are used in this paper:
e 
 error;
n 
 simple size;
S 
 observed standard deviation from a sample;
T 
 value of the t-student distribution;
x 
 east coordinate or component;
y 
 north coordinate or component;
� 
 significance level �commonly 5%�;
� 
 Type II error;
� 
 mean observed error value from a sample;
� 
 supposed standard deviation for a product or

population;
�2 
 value of the Chi-square distribution.

Subscripts

i 
 the ith case in the sample;
OBS 
 observed �derived from a sample of the product�;
True 
 field survey;

X 
 east coordinate or component; and
Y 
 north coordinate or component.
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